ii ideal switch

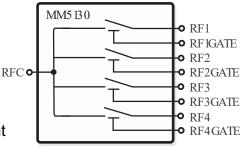
Preliminary Datasheet MM5130 – DC to 26 GHz High Power RF Switch Product Overview

Description:

The MM5130 device is a high-power SP4T micro-mechanical switch offered by Menlo Micro. Menlo Micro has developed a new Ideal SwitchTM fabrication process and applied it to DC and wideband RF/microwave switch applications. This innovative technology enables highly reliable switches capable of greater than 25 W forward power. The MM5130 provides ultra-low insertion loss and superior linearity as an SP4T from DC to 18 GHz, with greater than 3.0×10^9 switching cycles. The MM5130 can also be configured in super-port mode to extend the max frequency to 26GHz. The MM5130 is an ideal solution for replacing large RF electromechanical relays, as well as RF/microwave solid-state switches in applications where linearity and insertion loss are critical parameters. The four switch channels are individually controllable by applying a gate voltage to the corresponding RF GATE pin.

Features:

- DC to 26 GHz Frequency Range
- 25 W (CW), 150 W (Pulsed) Max Power Handling
- Low On-State Insertion Loss: 0.4 dB @ 6.0 GHz
- High Linearity, IIP3 > 85 dBm
- 25 dB Isolation @ 6.0 GHz
- High Reliability > 3.0x10⁹ Switching Operations
- 2.5 mm x 2.5 mm WLCSP Package


Applications:

- Switched Filter Banks and Tunable Filters
- High Power RF Front Ends
- Antenna Tuning
- Low-Loss Switch Matrices & EM Relay Replacement

Markets:

- Defense and Aerospace
- Medical Equipment
- Test and Measurement Systems
- Wireless Infrastructure

MEMS Glass cap

Functional Block Diagram

Electrical Characteristics

Operating Characteristics

Absolute Maximum Ratings

Exceeding the maximum ratings as listed in Table 1 below may reduce the reliability of the device or cause permanent damage. Operation of the MM5130 should be restricted to the limits indicated in Table 2 recommended operating conditions listed below.

Electrostatic Discharge (ESD) Safeguards

The MM5130 is a Class 0 ESD device. When handling the MM5130, observe precautions as with any other ESD sensitive device. Do not exceed the voltage ratings specified in Table 1 below.

Parameter	Minimum	Maximum	Unit
CW Input Power @ 6 GHz		25	W
Peak Input Power @ 6 GHz		150	W
Open State Voltage Rating / Switch RF1-4 to RFC ²		+/-150	V
Open State Voltage RF1-RF4, RFC to GND, GATE pin to GND Potential ²		+/-150	V
DC Voltage RFGATE Pins to RF1-RF4, RFC, GND ⁽²⁾		+/-100	V
DC Current Rating / Switch		500	mA
Hot Switching Current @ 0.5 V		10	mA
Operating Temperature Range	-40	+85	°C
Storage Temperature Range	-65	+150	°C

Table 1 Absolute Maximum Ratings 1

¹ All parameters must be within recommended operating conditions. Maximum DC and RF power can only be applied during the on-state condition (cold-switched condition).

² This also applies to ESD events. This is a Class 0 device.

Table 2 DC and AC Electrical Specifications

All specifications valid over full VBB range and full operating temperature range unless otherwise noted.

Parameter	Minimum	Typical	Maximum	Unit
Operating Frequency Range				
Normal SP4T mode	DC		18	GHz
Super-port mode	DC		26	GHz
CW Power @ 6 GHz ³			25	W
Peak Power @ 6 GHz ⁴			150	W
Insertion Loss				
Normal SP4T mode @ 6 GHz		0.4		
Super-port mode @ 6 GHz		0.6		
Normal SP4T mode @ 18 GHz		1.3		dB
Super-port mode @ 18 GHz		1.5		
Normal SP4T mode @ 26 GHz				
Super-port mode @ 26 GHz		2.6		
Input / Output Return Loss				
Normal SP4T mode @ 6 GHz		15		
Super-port mode @ 6 GHz		25		
Normal SP4T mode @ 18 GHz		10		dB
Super-port mode @ 18 GHz		18		
Normal SP4T mode @ 26 GHz				
Super-port mode @ 26 GHz		17		
Isolation				
Normal SP4T mode @ 6 GHz		25		
Super-port mode @ 6 GHz		28		
Normal SP4T mode @ 18 GHz		18		dB
Super-port mode @ 18 GHz		27		
Normal SP4T mode @ 26 GHz				
Super-port mode @ 26 GHz		18		
Channel to Channel Isolation @ 6 GHz		25		dB

³ Measured at +85°C.

 4 For 10 % Duty Cycle and 10 μs pulse width, measured at +85°C.

CONTRACTOR © 2020 Menlo Microsystems, Inc. | All Rights Reserved | www.menlomicro.com

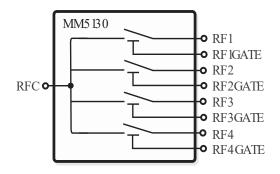
E				
Third-Order Intercept Point (IP3) ⁵		> 95		dBm
Second Harmonic (H2) ⁶		-130		dBc
Third Harmonic (H3) ⁷		-130		dBc
On / Off Switching Time				
Turn on time ⁸		8	15	μs
Turn off time		2	5	
Settling Time ⁹				
Settling time: on		8.5	16	μs
Settling time: off		2.5	6	
Full Cycle Frequency			10	kHz
On / Off Switch Operations ¹⁰				
at 25°C	3x10 ⁹			Qualaa
at 70°C		1x10 ⁹		Cycles
at 85°C		1x10 ⁸		
DC Steady State Carry Current			500	mA
Off-State RFC to RFOUT Leakage Current		15	150	nA
On-State Resistance (Ron)		0.5	3	Ω
Off-State Capacitance (Coff)		15		fF
Video Feedthrough ¹¹		16		mV _{Peak}
Gate Bias Voltage (VBB)	88	89	90	V _{DC}
Gate Voltage Slew Rate			20	V/µs
Gate Bias Current		2	10	nA

⁵ Measured at +25°C.

 $^{^{\}rm 6}$ Measured at 1.0 GHz and 2.0 GHz fundamental frequency and 35 dBm input power.

 $^{^{7}}$ Measured at 1.0 GHz and 2.0 GHz fundamental frequency and 35 dBm input power.

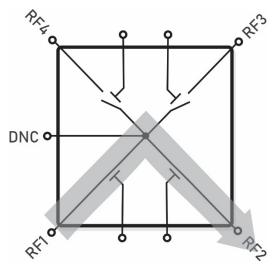
⁸ Includes any actuator bounce, and measured with 20 V/us slew rate GATE pin voltage.


⁹ Switch settling time measured from 50% VGATE to settling to within 0.05 dB of final value.

¹⁰ Measured at 5kHz cycling rate.

 $^{^{11}}$ Performed with 1 M Ω termination.

Normal SP4T Mode


The MM5130 is normally configured as a SP4T, with input on the RFC channel. The RFC is then routed to one of the 4 outputs by biasing the desired RFxGATE pin.

Normal SP4T Mode Block Diagram

Super-port Mode

The MM5130 provides for an alternate connection method which can provide enhanced performance for certain RF parameters. This configuration is called super-port. It consists of bypassing the RFC input port and using the remaining 4 channels as a symmetrically oriented SP3T (or SPST or SPDT if preferred). In this manner, any one of the RF1, RF2, RF3, RF4 channels can be connected to any other channel by biasing both desired channels. When operating in super-port mode, slight improvements in RF isolation and return loss can be achieved. Please refer to the "Recommended PCB Layout" section with instructions on how to optimize the PCB layout for super-port mode.

Super-port Mode Block Diagram

Package / Pinout Information

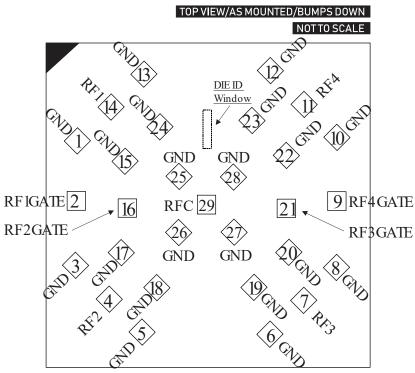


Figure 1:MM5130 2.5 mm x 2.5 mm pinout

Table 2 Detailed Pin Description

Pin #	Pin Name	Description
1,3,5,6,8,10,12,13,15,17, 18,19,20,22,23,24,25,26,27,28	GND	RF Ground
2	RF1GATE	Control for Switch RF1
16	RF2GATE	Control for Switch RF2
4	RF2	RF Switch 2
7	RF3	RF Switch 3
21	RF3GATE	Control for Switch RF3
9	RF4GATE	Control for Switch RF4
11	RF4	RF Switch 4
14	RF1	RF Switch 1
29	RFC	RF Common

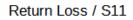
Table 3 Applied Gate Voltage vs. RF Switch States (On= Closed, Off = Open). Each switch is individually controllable. Primary usage states are highlighted in **bold**. Multiple branches may be closed simultaneously, however RF performance is not specified for such states.

RF4GATE (V)	RF3GATE (V)	RF2GATE (V)	RF1GATE (V)	RFC – RF4	RFC – RF3	RFC– RF2	RFC– RF1
Normal SP4T Mode							
0 0		0	VBB	Off	Off	Off	On
0	0 0		0	Off	Off	On	Off
0	0 VBB		0	Off	On	Off	Off
VBB	0	0	0	On	Off	Off	Off
0	0	0	0	Off	Off	Off	Off
		Other	valid states				
0	0	VBB*	VBB*	Off	Off	On	On
0	VBB*	0	VBB*	Off	On	Off	On
0	VBB*	VBB*	0	Off	On	On	Off
VBB*	0	0	VBB*	On	Off	Off	On
VBB*	0	VBB*	0	On	Off	On	Off
VBB*	VBB*	0	0	On	On	Off	Off
VBB	VBB	0	VBB	On	On	Off	On
VBB	VBB	VBB	0	On	On	On	Off
VBB	VBB	VBB	VBB	On	On	On	On
0	VBB	VBB	VBB	Off	On	On	On
VBB	0	VBB	VBB	On	Off	On	On

*Valid states for Super-port mode

RF Performance

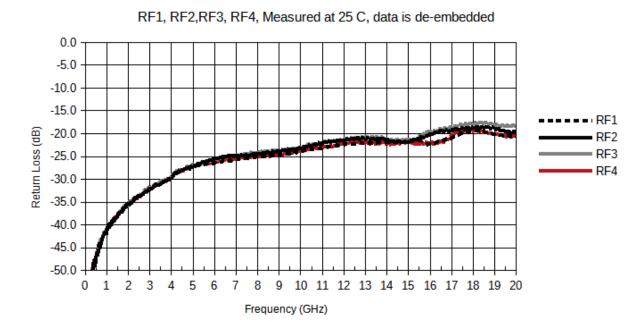
8


Normal Mode (SP4T)

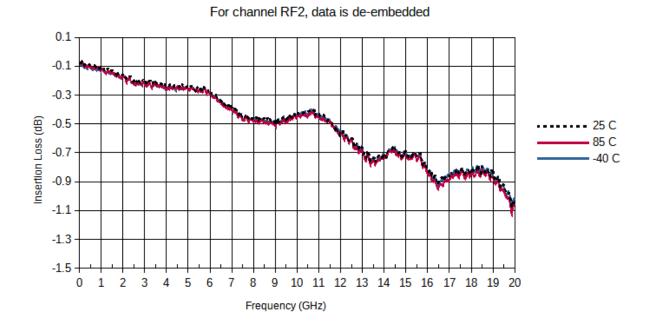
Typical device performance measured on evaluation board, de-embedded. For bandlimited applications, the performance may be further improved with narrowband matching techniques.

Insertion Loss / S21

0.0 -0.5 74 -1.0 RF1 nsertion Loss (dB) RF2 RF3 -1.5 RF4 -2.0 -2.5 -3.0 9 10 11 12 13 14 15 16 17 18 19 20 0 2 3 4 5 6 7 8 1 Frequency (GHz)

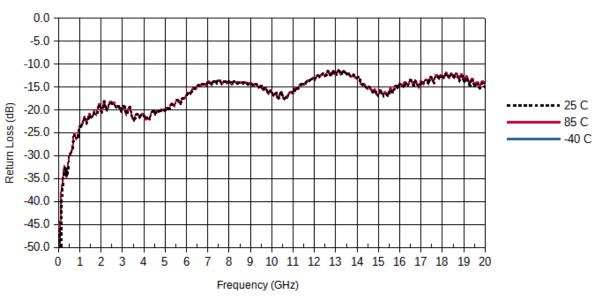

RF1, RF2, RF3, RF4, Measured at 25 C, data is de-embedded

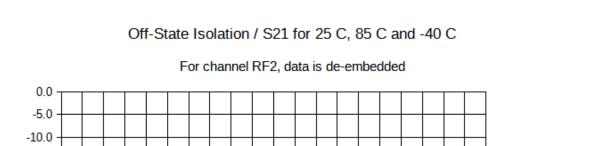



RF1, RF2, RF3, RF4 Measured at 25 C 0.0 -5.0 -10.0 -15.0 RF1 Return Loss (dB) -20.0 RF2 ALC R RF3 -25.0 • RF4 -30.0 -35.0 -40.0 -45.0 -50.0 8 9 10 11 12 13 14 15 16 17 18 19 20 2 3 4 5 6 7 0 1 Frequency (GHz)

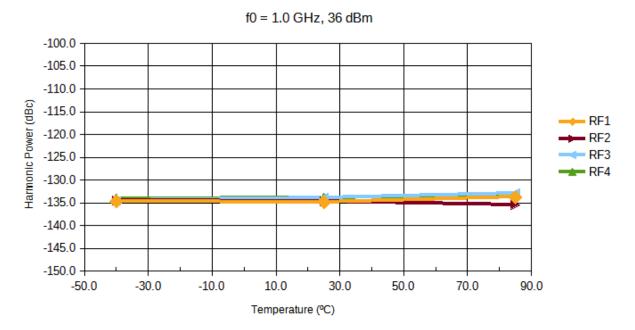
9

Off-State Isolation / S21



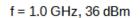

v1.9

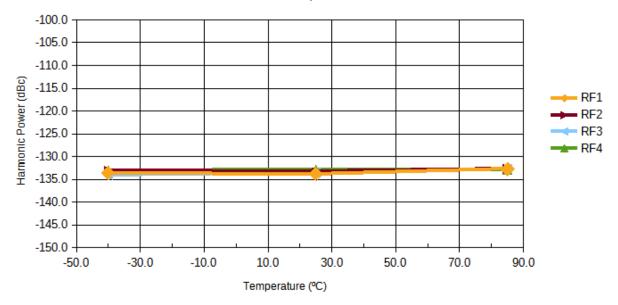
Return Loss / S11 FOR 25 C, 85 C and -40 C

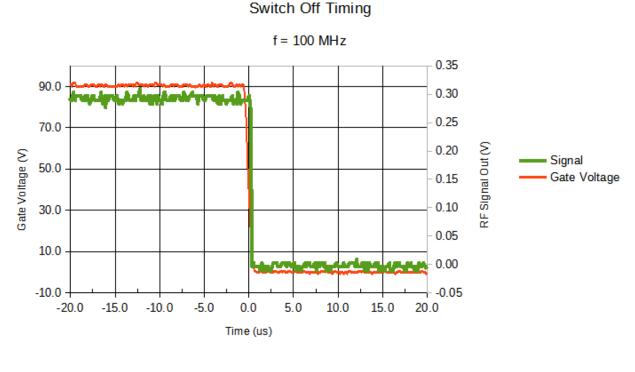


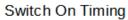
For channel RF2, data is de-embedded

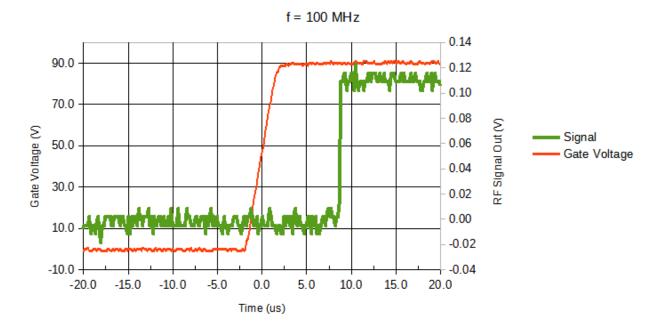
0.0 -5.0 -10.0 -15.0 ----- 25 C Return Loss (dB) -20.0 - 85 C -25.0 -40 C -30.0 -35.0 -40.0 -45.0 -50.0 3 9 10 11 12 13 14 15 16 17 18 19 20 0 1 2 4 5 6 7 8 Frequency (GHz)

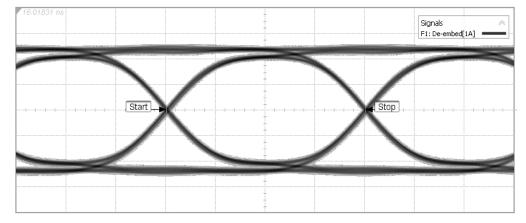




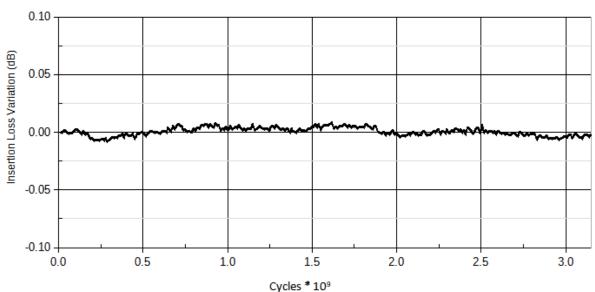

Second Harmonic Power vs. Temperature







On / Off Switching Time


Single-Ended Eye Diagram Measurement

13

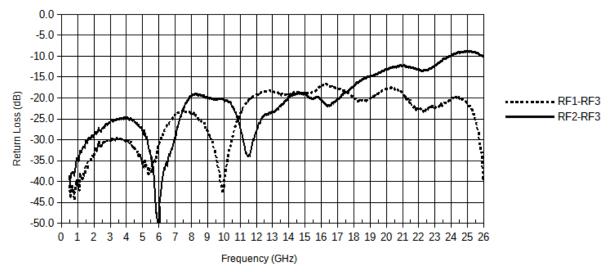
Test Cases	Bit rate	Eye Height	-	Jitter (Pk to Pk)	Rise Time	Fall Time
Baseline-Test System	20.000 Gbps	440.00 mV	48.16 ps	1.99 ps	14.99 ps	14.33 ps
<u>MM5130 EVK</u>	20.000 Gbps	<u>339.80 mV</u>	<u>48.20 ps</u>	<u>2.16 ps</u>	<u>24.00 ps</u>	<u>24.34 ps</u>

Typical Hot-switching Performance

Insertion Loss Variation over Cycling

Channel RF1 cycled with 10 dBm RF power, measured at 25 C

RF Performance Super-Port Mode

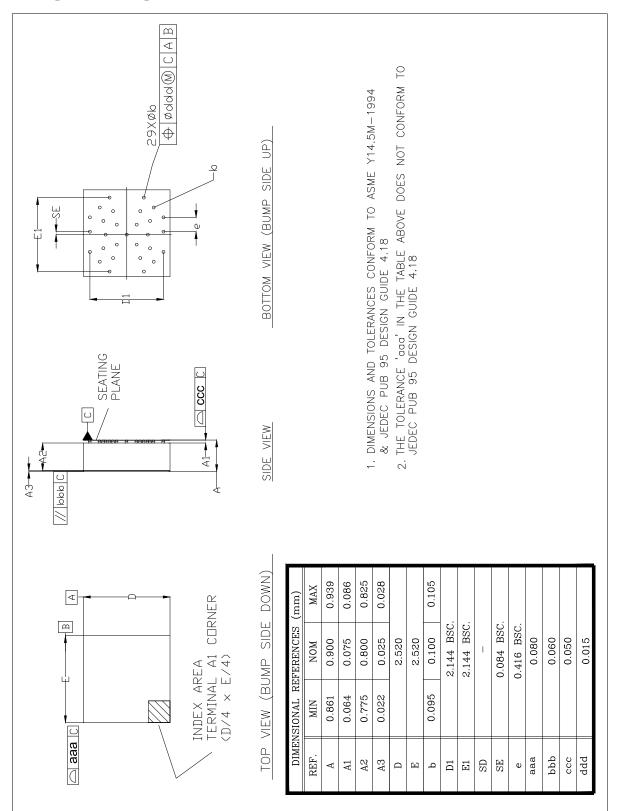

14

Rf1RF3 & RF2-RF3, Measured at 25 C, data is de-embedded

Super-Port Config Insertion Loss / S21

Super-Port Config Return Loss / S11

RF1-RF3 & RF2-RF3, Measured at 25 C



Package Drawing

menlomicro

C)

Bump Coordinates

BOTTOM VIEW/BUMPS UP (0,0 @ DIE CENTER) μm, TO SCALE

0.0, 0.0 at die center

16

Pin	X(um)	Y(um)
1	1072	500
2	1072	84
3	1072	-500
4	786	-786
5	500	-1072
6	-500	-1072
7	-786	-786
8	-1072	-500
9	-1072	84
10	-1072	500
11	-786	786
12	-500	1072
13	500	1072
14	786	786
15	681	396
16	615	0
17	681	-396
18	396	-681
19	-396	-681
20	-681	-396
21	-615	0
22	-681	396
23	-396	681
24	396	681
25	290	290
26	290	-290
27	-290	-290
28	-290	290
29	0	0

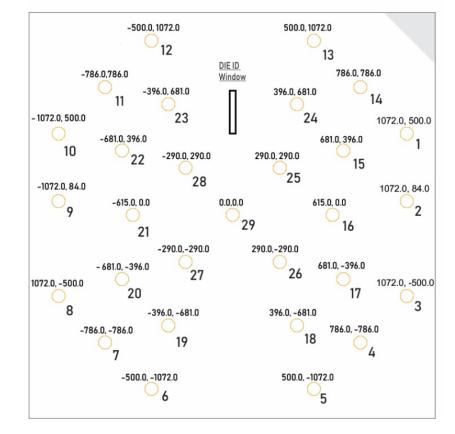
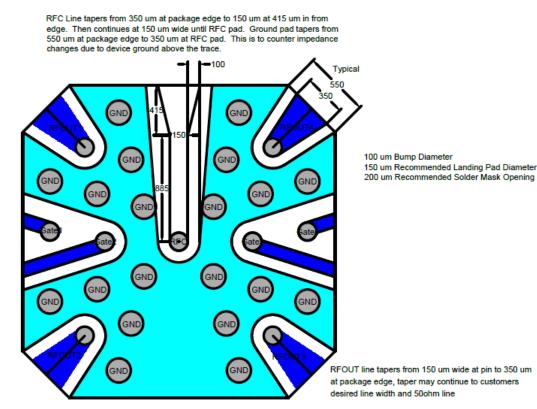


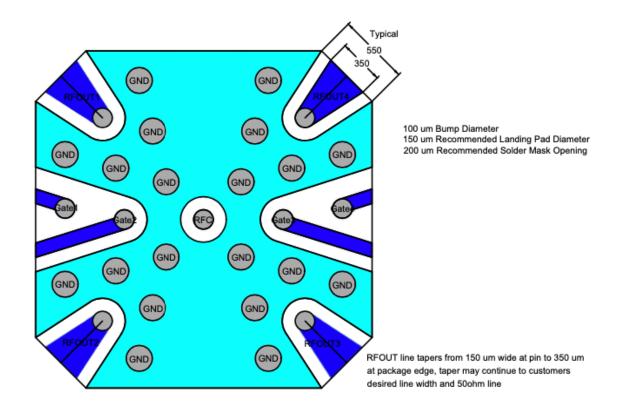
Figure 2: Bump Coordinates

Recommended PCB Layout

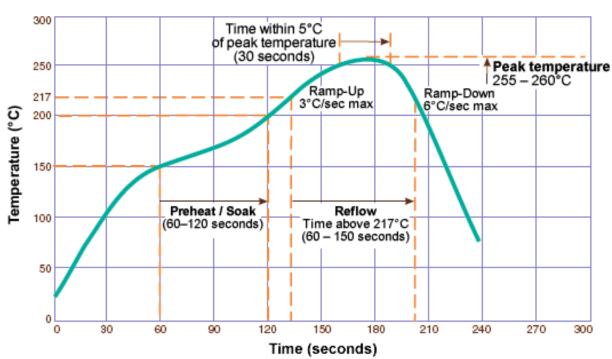

Layout recommendation for connecting the MM5130 with coplanar RF line or grounded coplanar line as used for the MM5130 evaluation board.

For the coplanar RF lines, it is recommended to taper the line to fit the 150 um recommended landing pad while keeping the spacing to the ground metal constant and identical to the spacing used for the line.

In those two examples (Normal SP4T Mode and Super-Port Mode) a 4.0 mil/0.10 mm spacing is used. Recommended maximum solder resist thickness 20 um. Routing of the gate control lines is not critical for RF performance.

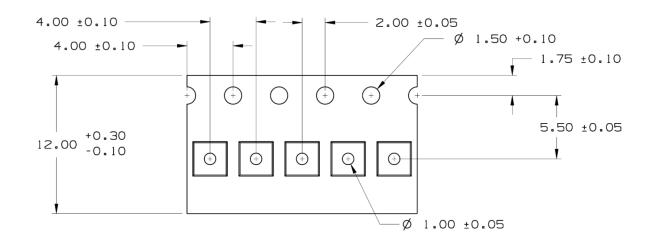

Normal SP4T Mode

Dimensions in um



Super-Port Mode

Dimensions in um



For detailed information on soldering the MM5130, please refer to application note: "WL-FC Assembly Instrunctions"

• A ROHS compliant Solder Alloy used is SAC alloy: 96.5% Sn, 3.0%Ag, 0.5%Cu. These are the nominal percentages of the components. This alloy is designed to replace SnPb solders to eliminate Lead (Pb) from the process, requiring a higher reflow temperature. Moisture resistance performance may be impacted if not using the Pb-Free reflow conditions.

Tape & Reel Details

Package Options and Ordering Information

Part Number	ECCN	Package	Temperature Range
MM5130-03C	EAR99	2.5 mm x 2.5 mm 29 pin WL-FC	-40°C to +85°C
MM5130EVK1	EAR99	Evaluation Board MM5130 <12 GH	lz
MM5130EVK2	EAR99	Evaluation Board MM5130 18 GHz	2
MM5130EVK3	EAR99	Evaluation Board MM5130 Superp	ort Mode 26 GHz

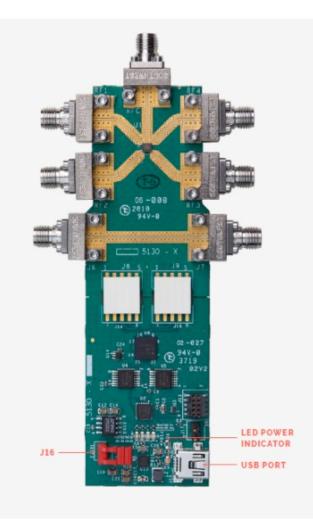


Figure 3:MM5130EVK2 18 GHz Evaluation Board

Important Information

Disclaimer

The data presented in this document is for informational purposes only and shall in no event be regarded as a guarantee of conditions or characteristics. Any warranty or license for this product shall be specified and governed by the terms of a separate purchase agreement. Menlo Micro does not assume any liability arising out of the application or use of this product; neither does it convey any license under its patent rights, nor the rights of others.

Menlo Micro reserves the right to make changes in these specifications and features shown herein to improve reliability, function and design, or discontinue of this product, at any time without notice or obligation. Contact our product representative for the most current information.

Warning

This product is not authorized for use:

- 1) In any life support systems.
- **2)** Applications for implanting into the human body, without the express written approval from Menlo Micro.

Trademark Notices

All trademarks and product service marks are owned by Menlo Microsystems, Inc.

Contact Information

Please contact Menlo Micro for the latest specifications, additional product information, test and evaluation boards, product samples, worldwide sales and distribution locations:

Internet: www.menlomicro.com

E-mail: sales@menlomicro.com

For product technical questions and application information: support@menlomicro.com.

